Controlling the Motion of Complex Molecules and Particles (COMOTION)

Recent advances in X-ray free-electron laser have enabled the observation of near-atomic-resolution structures in diffraction before-destruction experiments, for instance, of isolated mimiviruses and of proteins from microscopic crystals. The goal to record molecular movies with spatial and temporal atomic-resolution (femtoseconds and picometers) on individual molecules is near. Furthermore, the investigation of ultrafast, sub-femtosecond electron dynamics in small molecules is providing first results. Its extension to large molecules promises the unraveling of charge migration and energy transport in complex (bio)molecular systems. Novel matter-wave experiments with large molecules are testing the limits of quantum mechanics, particle-wave duality, and coherence. Extending these metrology experiments to larger systems will widen our understanding of the underlying physics whilst also allowing the precise measurement of molecular properties.

The principal obstacle for these and similar experiments across the molecular sciences is the controlled production of identical samples of individual molecules in the gas phase

Within the COMOTION project we focus our research efforts on

Cold and controlled large molecules

Efforts on creating controlled samples for ideal single-particle-diffraction experiments: High-density, shockfrozen, laser-aligned native-structure samples of biological macromolecules

Optically Controlled Particles

Approaches for the production of purified high-density beams of a broad variety of biological nanoparticles and establish control through electric fields and optical fields from a laser.

Freeze-and-deposit sample delivery

Development of a novel, disruptive sample-preparation approach for cryo-electron microscopy

Diffractive Imaging

Imaging and reconstruction of the three-dimensional molecular structure of isolated (biological) molecules and nanoparticles at atomic resolution.

Novel molecule sources

Methodologies to vaporise large (bio)molecules and particles and efficiently inject them into vacuum for further manipulation.

Most relevant funding

ERC logo

Funded through an ERC Consolidator Grant (ERC-CoG 614507-COMOTION)

 

Publications


Recent preprints


http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png  ;  ;  ;
Laser-induced alignment of nanoparticles and macromolecules for single-particle-imaging applications
[10.3204/PUBDB-2024-01943]  GO OpenAccess  Download fulltext Files  Download fulltextFulltext by arXiv.org BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Time-Resolved Single-Particle X-ray Scattering Reveals Electron-Density Gradients As Coherent Plasmonic-Nanoparticle-Oscillation Source
 GO arXiv  Download fulltext Files  Download fulltextFulltext by arXiv.org BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Observation of a single protein by ultrafast X-ray diffraction
[10.1101/2022.03.09.483477]  GO OpenAccess  Download fulltext Files BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
New aerodynamic lens injector for single particle diffractive imaging
 GO arXiv  Download fulltext Files  Download fulltextFulltext by arXiv.org BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png  ;  ;  ;  ;  ;  ;  ;
Picosecond pulse-shaping for strong three-dimensional field-free alignment of generic asymmetric-top molecules
 GO arXiv  Download fulltext Files  Download fulltextFulltext by arXiv.org BibTeX | EndNote: XML, Text | RIS

Peer-reviewed publications